(NASA-CR-126039) USING A SMALL/LOW COST N72-21210
CONPUTER IN AN INFORMATION CENTER D.U.
Wilde (Connecticut Univ.) {19723 12 p
CSCL 098

Unclas
G3/08 __242u9

USING A SMALL/LOW COST COMPUTER IN AN INFORMATION CENTER*

Daniel U, Wilde
New England Research Applications Center

University of Connecticut
Storrs, Connecticut

Abstract

In the past, mechanization has been limited to those information
centers that have access to extensive computer facilities. Now,
small/low cost computers are available with I/0 capacities that make
them suitable for SDI and retrospective searching on any of the many
commercially available data bases., A small two-tape computer system
is assumed, and an analysis of its run-time equations leads to a three-
step search procedure., Run times and costs are shown as a function of
file size, number of search terms, and input transmission rates, Actual
examples verify that it is economically feasible for an information

center to consider its own small, dedicated computer system,

* This research was sponsored in part by the National Aeronautics and
Space Administration Contract NASW - 2307,

REPRODUCED BY _
NATIONAL TECHNICA
INFORMATION SERVICE

U.S. DEPARTMENT OF COMMERCE
SPRINGFIELD, VA. 22161

Introduction

Until recently, information center mechanization has been limited
to those centers that have access to extensive computer facilities.
Although the amount of machine time that a center uses may be small,
the center is dependent upon the services of highly specialized computer
personnel, Consequently, computerization has occurred in large centers
that can afford their own computer system or those centers that have
convenient access to someone else's machine,

By now, the small computer has gained wide acceptance and its
use for special applications has become commonplace, For example,
Warheit (1) suggests the IBM System/3 as a small, general purpose computer
which can perform a great variety of library jobs, such as controlling
book circulation and producing overdue notices. Furthermore, he feels
that it is cheap enough so that many libraries which formerly could not
afford computer services now have the opportunity to have their own
system (2).

IBM has recently announced that inexpensive tape drives will soon
be available for its System/3. This means that this machine can be used
by information centers to process externally produced data bases that are
distributed on tape, such as the Library of Congress MARC file, In
addition, it will be possible to use this system for SDI and retrospective
searching on any of the manyvcommercially available data bases. Let us

now consider how this might be done with a small/low cost computer,

The Computer System

At this point, let us assume that the computer budget is limited
and that hardware costs are to be kept low, Therefore, let us begin
with the small system described by Warheit and add two tape drives.
Now, we have a machine that includes a small CPU with limited memory,
a card input/output device, a printer, and two tape drives. This
minimal configuration in a System/3 will rent for approximately
$2,600,00 to $2,900,00 per month when tapes are available, This same
configuration is currently available in an IBM 1130 and rents for
apprpximately $2,700,00 to $3,400.00 per month, Both include a small

disk for storage of a monitor and user programs.

Search Procedure

With such a small machine, random access searching on inverted
files is out of the question, This is particularly true for large data
bases, such as the American Society for Metals (ASM) file of 125,000
documents or the National Aeronautics and Space Administration (NASA)
file of 650,000, Furthermore, file inversion on such a limited machine
would be relatively difficult since the system includes just two tapes
and one small disk. Consequently, both search and file maintenance
procedures dictate that data files be organized in a linear mode, This
requires that each and every document be examined during eacﬁ search,

Needless to say, this may result in long search runs,

Appendix 1 shows equations that can be used to predict linear search
times, Analysis of these equations shows that run time is a function of
three sets of parameters. The first set is dictated by the data file
and includes the number of data bank documents and the average number
of index terms per document., The second set is determined by the
computer and includes average instruction execution time, start time of
the input tape drive, and time to transmit one input character from the
drive to memory. The third set is specified by the information center
and includes the average number of characters per input document and the
number of search terms per retrieval run, Let us now consider how these
last two parameters can be varied by the information center so as to
lessen search times,

The average number of input characters can be reduced by eliminating
non-essential information from the data file, Here, document records are
edited to conform to the needs and demands of center users. On a small
machine with limited memory, this reformating may require multiple passes.
Here, the output tape is used for storage of intermediate results which
become the input to the next pass.

The number of search terms can be reduced by examining the construc-
tion of search strategies. For simplicity, let us assume Boolean logic,

From the equation
S=A* (B+C)+D*E

it can be seen that if S is to be true, then one of the following abbre-

viated equations, S., must also be true,

i

Sl=A+D SZ=A+E

B+C+ E

83=B+C+D S4

1f for a given document an S; is false, then S is also false, Therefore,
S need only be evaluated for those documents for which S; is true.

This approach leads to a three-step retrieval procedure. In the
first step, the complete file is searched using an abbreviated strategy, S5
Here, documents are read from the data file using one tape drive as input,
When a document is found that satisfies S;, it is copied onto the other
tape. If a document does not satisfy S;, it is skipped since it cannot
fulfill S, After the complete data file has been scanned, the output file
contains the subset of documents that satisfies S;. During the second step,
this sub-file is searched using the complete strategy, S. When a document
is found that satisfies S, it is copied onto the output file along with a
tag that identifies its requestor., Finally, in the third step, search
results are printed, Here, documents are grouped together by requestor
by passing the print tape once for each request,

Generally, run time for the first step is minimized by selecting an
abbreviated strategy which contains the least number of terms. For the S
shown above, this implies S1 or SZ’ Second-step run time is minimized by
selecting the abbreviated strategy which produces the smallest output during
the first step. Here, to make a final choice, we must know the relative
occurrences of terms: A, D, and E, Lastly, print time during the third

step depends upon the number of documents retrieved by S in the second step,.

If several searches are batched together, the abbreviated equation for

the first step is simply the sum of the individual abbreviated equations.
On the other hand, abbreviated strategies can be selected so as to permit
the strategy designer to iteratively partition his data base into sub-
files and to quickly examine sub-file content as described in Wilde (3).
In contrast, abbreviated strategies can be designed such that several
complete strategies can be run in parallel during the second step as

suggested by Junkins and Schultz (4),

Search Times

The equations in Appendix 1 predict that search time grows linearly
as thé number of search terms increases. This is confirmed by experimental
data displayed in Figure 1, Here, run time per 10,000 documents is shown
for three different input transmission rates as a function of the number
of abbreviated strategy terms. These graphs can be used to estimate run
times for different system configurations and data file sizes, For
example, an SDI search of 25 abbreviated terms on an update of 5,000

documents using a 15kc input drive takes approximately

5,000 doc, . 4,26 min, &4 2.1 min,

10,000 doc,

Similarly, a retrospective search of 10 abbreviated terms on a file of

650,000 documents using a 60kc drive takes apbroximately

650,000 doc.

10,000 doc.

. 1,14 min, R 75 min.

Figure 1 - Run Time versus Search Terms (IBM 1130 - No overlap)

A
mm./
'0) Q00 (ioc.
b + l5!fc.
- A -
5+ -t
4 1 / sok‘-
- -
3 4 L QOL(..
- . .""”"’ﬂ/
- i
21— [N

Search costs can be estimated by multiplying predicted run times
by computer rates, Table 1 presents a set of monthly and hourly rates
for a two-tape IBM 1130 system using the same three input speeds shown in
Figure 1, (Hourly rates assume 176 hours/month.,) Here, rates are given
for a total system and for tapes alone. This latter figure would be
appropriate if a.non-tape system were already installed and if the extra
tape costs were of interest,

Using the same examples as above, the system cost for the SDI would
be

$17.90/hr, . 2.1 min, oy $.65
60 min/hr,

while the tape-only cost for the retrospective would be

$10.94/hr, . 75 min, 4 $13.70
60 min/hr.

Summazx

If an information center is to be successful, it must be responsive
to the demands of its users and clients., If a center has its own computer
system, it can schedule batched runs, special runs, or evening runs in
order to satisfy client demands, to meet higher priorities, or to
overcome equipment failures, When a center has its own machine, it is
paying a flat rental fee or fixed monthly amortization charge., Thus,
additional computer use results in a lower per unit cost. Until recently,
computer systems with good I/0 were too expensive for most centers,

Now, small/low cost machines are available that permit a center to consider

acquiring its own dedicated computer system,

Acknowledgement

I would like to thank Mr, Stuart Harris for his aid in programming
the NERAC search system and Mrs, Susan Abramson for her help in generating

the test data,

Appendix 1 - Search Time Equations

Total run time, T for a linear search is a function of total

Trun?®

central processor time, Tcpu» and total tape time, Ttape' If computer
operations are overlapped, T.,, equals the larger of Tcpu and Ttape° If

they are not, T,,, equals the sum of Tcpu and Ttape°

Total tape time, Ttape’ is a function of total input time, Tinput'

and total output time, T Generally, since the number of retrieved

output’®

documents is much less than the number of data bank documents, Toutput

is very small relative to T,

input* Therefore, for simplicity, T

output

is ignored.

T is the sum of the time spent starting the input tape drive,

input
Tgtart» the time transmitting information from the drive to memory, Tiranse,
and the time stopping the drive, Tstop' Even the most elementary tape
drive sends an end-of-transmission signal at each inter-record gap; and

thus, there is no need to wait for the drive to stop. Therefore,

Teape = Tstart * Ttrans (1)

The total time spent starting the input drive is the product of the
time per start, tge,pe, and the number of starts during a search. If the
file being searched contains Nj,. and if the input tape is blocked at an

average of nyj..x documents per block, then total start time is

T Ndoc

start « tstart (2)

Mhlock

The total tape transmission time is the product of the number of
documents, Ndoc? the average number of characters transmitted per

document, M har? and the time to transmit each character, There-

tchar'

fore, total transmission time is

Ttrané Ndoc * "char ° tchar (3)
Total tape time is then found by substituting (2) and (3) into (1)
producing
T = N tstart
tape doc + Nchar ¢ tchar (4)
Mhlock

The total central processing time, Tcpu' can be expressed as the
product of the number of documents, Ndoc’ and the average time to process

each document, tioc®

Tepu = Ngoc « Tdoc (5)

Here, the average time to process each document is the product of
the average number of instructions to process that document, nj,c¢, times

the time to execute an average instruction, tinste

t =n

doc . t

inst inst (6)

In processing a linear file, document terms must be compared against
question terms. The algorithm chosen to perform these comparisons must

be a function of the average number of index terms per document, igoc,

10

and the number of retrieval search terms, iggegych. If each document
term is compared against each search term, then the average number of

instructions to process each document is

n n

i +
lsearch ° comp Thouse

(7)

. = i
inst doc

where Neomp specifies the number of instructions to make a term com-
parison while ny,,se represents the instructions to perform housekeeping
functions., If both search and document terms have been previously sorted,

this expression can be improved to
Ninst = (idoc * isearch) : Mcomp * Mhouse (8)

Substituting (6) and (8) into (5), total CPU time becomes

Tcpu = Ngoc {Fidoc * lsearch) ° Reomp * nhous{}" tinst(?)

Examination of equations (4) and (9) shows that run time is a
function of three independent sets of constraints. The first set is
dictated by the data file and includes the number of data bank documents
and the avérage number of index terms per document, The second set is
determined by the computer and includes average instruction execution time,
start time of the input tape drive, and time to transmit one input character
from the drive to memory, The third set is specified by the information
center and includes the average number of documents per input block, the
average number of characters per input document, and the number of search
terms per retrieval run, Here, the number of documents per block should be
adjusted so as to produce a balanced run where tape time and CPU time are

nearly equal, Balancing is discussed in Gildersleeve (5).

11

References

Warheit, I.A., The Small Computer and the Library, Proceedings
of the American Society for Information Science, Volume 7/,
1970, pp. 91-93,

, Library Automation: The IBM System/3, IBM
Corporation, In Press,

Wilde, D,U,, Iterative Strategy Design, American Documentation,
January, 1969, pp. 90-91,

Junkins, K, and L. Schultz, An Alternate Strategy to Iterative
Searching, Proceedings of the American Society for Information
Science, Volume 7, 1070, pp. 325-325.

Gildersleeve, T.R., Desi§§ of Sequential File Systems, Wiley -
Interscience, New York, .

